首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   2篇
  国内免费   2篇
航空   147篇
航天技术   51篇
综合类   1篇
航天   83篇
  2021年   5篇
  2019年   3篇
  2018年   8篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   12篇
  2012年   12篇
  2011年   27篇
  2010年   6篇
  2009年   13篇
  2008年   17篇
  2007年   18篇
  2006年   10篇
  2005年   16篇
  2004年   9篇
  2003年   15篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1985年   8篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1967年   9篇
  1966年   11篇
排序方式: 共有282条查询结果,搜索用时 31 毫秒
71.
Meteor Phenomena and Bodies   总被引:12,自引:0,他引:12  
Meteoroids can be observed at collision with the Earth's atmosphere as meteors. Different methods of observing meteors are presented: besides the traditional counts of individual events, exact methods yield also data on the geometry of the atmospheric trajectory; on the dynamics and ablation of the body in the atmosphere; on radiation; on the spectral distribution of radiation; on ionization; on accompanying sounds; and also data on orbits. Theoretical models of meteoroid interaction with the atmosphere are given and applied to observational data. Attention is paid to radar observations; to spectroscopic observations; to experiments with artificial meteors and to different types of meteor sounds. The proposed composition and structure of meteoroids as well as their orbits link them to meteorites, asteroids and comets. Meteor streams can be observed as meteor showers and storms. The rate of influx of meteoroids of different sizes onto Earth is presented and potential hazards discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
72.
Variations in the abundances of short-lived radionuclides such as 26Al (τ1/2 ≈ 0.74 Ma) and 53Mn (τ1/2 ≈ 3.7 Ma) in meteoritic solids may be used to infer relative formation intervals of these solids in the nebula at precisions of less than 1 Ma. In a strict chronometric interpretation of the isotopic variations, whereby criteria such as spatial and temporal isotopic homogeneity and closed system isotopic evolution are met, solid formation occurred in the nebula for at least several million years. This is longer than some theoretical and astronomical estimates for the duration of the active nebula. The evidence for live 41Ca (τ1/2 ≈ 0.10 Ma) in meteoritic inclusions further indicates that the onset of solid formation occurred quite early, perhaps within a few hundred thousand years after the onset of the collapse of the sun's parent molecular cloud. Failure of the chronometric interpretation may arise for a variety of reasons, including but not limited to, the late, inhomogeneous injection of material from a nearby stellar source or the local production of short-lived radionuclides by an energetic particle irradiation, e. g., from T Tauri (X-wind) or galactic cosmic ray sources. Although some isotopic evidence exists that the criteria required for a strict chronometric interpretation are not met by each of the short-lived chronometers, there is no compelling reason to shorten the interval of solid formation in the nebula to less than 1 Ma. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
73.
The question of the origin of cosmic rays and other questions of astroparticle and particle physics can be addressed with indirect air-shower observations above 10 TeV primary energy. We propose to explore the cosmic ray and γ-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV with the new ground-based large-area wide angle (ΔΩ ∼ 0.85 sterad) air-shower detector HiSCORE (Hundredi Square-km Cosmic ORigin Explorer). The HiSCORE detector is based on non-imaging air-shower Cherenkov light-front sampling using an array of light-collecting stations. A full detector simulation and basic reconstruction algorithms have been used to assess the performance of HiSCORE. First prototype studies for different hardware components of the detector array have been carried out. The resulting sensitivity of HiSCORE to γ-rays will be comparable to CTA at 50 TeV and will extend the sensitive energy range for γ-rays up to the PeV regime. HiSCORE will also be sensitive to charged cosmic rays between 100 TeV and 1 EeV.  相似文献   
74.
The MOPITT (Measurements of Pollution in the Troposphere) instrument has provided more than nine years of global carbon monoxide (CO) measurements on a continuous basis since its launch aboard the Terra Spacecraft on December 18th, 1999. This paper gives an overview of the core sub-system performance and major issues of the in-flight instrument over the mission period. Some of the instrument anomalies are also discussed. The major successes are: (1) the concept of using a combination of correlation systems such as Length Modulated Cells (LMCs) and Pressure Modulated Cells (PMCs) to retrieve CO profiles in the troposphere; (2) the redundant design in the instrumentation which was crucial for coping with unexpected in-flight anomalies and for continuing the mission in the case of component failure; (3) the thermal environment on orbit that is so stable that some calibration procedures are not necessary; and (4) the recent production of CO total column retrieved from the MOPITT 2.3 μm channel.  相似文献   
75.
The evidently low solar activity observed between solar cycles 23 and 24 during the years 2008–2010 led to a substantial increase in the Galactic Cosmic Ray (GCR) intensity in comparison with preceding solar minima. As the GCRs consist of highly-ionizing charged particles having the potential to cause biological damage, they are a subject of concern for manned missions to space. With the enhanced particle fluxes observed between 2008 and 2010, it is reasonable to assume that the radiation exposure from GCR must have also increased to unusually high levels. In this paper, the GCR exposure outside and inside the Earth’s magnetosphere is numerically calculated for time periods starting from 1970 to the end of 2011 in order to investigate the increase in dose levels during the years 2008–2010 in comparison with the last three solar minima. The dose rates were calculated in a water sphere, used as a surrogate for the human body, either unshielded or surrounded by aluminium shielding of 0.3, 10 or 40 g/cm2.  相似文献   
76.
77.
Dorr RF 《Aerospace America》2003,41(10):8-9, 41
Current legislative activity in Washington includes plans for hearings and proposed changes to NASA after the publication of the Columbia Accident Investigation Board report in August, 2003. Also reviewed are legislative interest in airline safety and armed forces expansion.  相似文献   
78.
We propose a terahertz (far-infrared) circular dichroism-based life-detection technology that may provide a universal and unequivocal spectroscopic signature of living systems regardless of their genesis. We argue that, irrespective of the specifics of their chemistry, all life forms will employ well-structured, chiral, stereochemically pure macromolecules (>500 atoms) as the catalysts with which they perform their metabolic and replicative functions. We also argue that nearly all such macromolecules will absorb strongly at terahertz frequencies and exhibit significant circular dichroism, and that this circular dichroism unambiguously distinguishes biological from abiological materials. Lastly, we describe several approaches to the fabrication of a terahertz circular dichroism spectrometer and provide preliminary experimental indications of their feasibility. Because terahertz circular dichroism signals arise from the molecular machinery necessary to carry out life's metabolic and genetic processes, this life-detection method differs fundamentally from more well-established approaches based on the detection of isotopic fractionation, "signature" carbon compounds, disequilibria, or other by-products of metabolism. Moreover, terahertz circular dichroism spectroscopy detects this machinery in a manner that makes few, if any, assumptions as to its chemical nature or the processes that it performs.  相似文献   
79.
The Geology of Mercury: The View Prior to the MESSENGER Mission   总被引:1,自引:0,他引:1  
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface, a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor (∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry; (6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data.  相似文献   
80.
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号